Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Med Rep ; 14(3): 2867-75, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27484208

RESUMO

Acute myocardial infarction (AMI) is a life-threatening episode of coronary artery disease. Recently, circulating myocardial-derived microRNAs (miRNAs) have been reported as potential biomarkers of infarction. The present study aimed to identify differentially expressed miRNAs in patients with ST-segment elevation myocardial infarction that could be potentially dysregulated in response to early myocardial damage. miRNA expression profile analysis was performed using the Serum/Plasma Focus miRNA Polymerase Chain Reaction (PCR) panel of Exiqon A/S (Vedbaek, Denmark) on plasma samples of patients on the first day of AMI (admission) and on samples from the identical patients collected six months following AMI. Selected miRNAs were validated by reverse transcription­quantitative PCR (RT­qPCR) using independent patients with AMI and a control group of patients with a stable coronary artery disease. Thirty­two species of plasma miRNA were differentially expressed (P<0.05) on admission compared with six months following AMI. Subsequent validation in an independent patient group confirmed that miR­133b and miR­22­5p were significantly up­regulated in the serum of patients with AMI. The receiver operating characteristic (ROC) curve analysis demonstrated a diagnostic utility for miR-22-5p, which has not previously been reported to be associated with AMI. Among the selected miRNAs, miR­22­5p represents a novel promising biomarker for the diagnosis of AMI.


Assuntos
MicroRNAs/genética , Infarto do Miocárdio/genética , Adulto , Biomarcadores , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Infarto do Miocárdio/diagnóstico , Curva ROC , Reprodutibilidade dos Testes , Fatores de Risco
2.
PLoS One ; 10(6): e0129820, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26086777

RESUMO

OBJECTIVE: The rs12526453 (C/G) is a single nucleotide polymorphism in an intron of the PHACTR1 gene (phosphatase and actin regulator 1). The C allele is associated with increased risk of coronary artery disease in an unknown mechanism. We investigated its association with long-term overall mortality in patients with ST-elevation myocardial infarction (STEMI) treated invasively. METHODS: Two independent groups of patients with STEMI were analyzed: a derivation group (n= 638) and a validation one (n=348). Genotyping was performed with the TaqMan method. The analyzed end-point was total long term mortality. Additionally, transcriptomic analysis was performed in mononuclear blood leukocytes from rs12526453 CC monozygotes or G allele carriers. RESULTS: In the study group (mean age 62.3 ± 11.9 years; 24.9% of females, n=159), percentages of CC, CG, and GG genotypes were 45.3% (n=289), 44.7% (n=285), and 10% (n=64), respectively. In the 5-year follow-up 105 patients died (16.46%). CC homozygotes had significantly lower mortality compared to other genotypes: 13.1% (n=38) vs. 18.3% in G-allele carriers (n=67), (p=0.017, Cox`s F test). In the validation group 47 patients died within 3 years (13.5%). We confirmed lower mortality of CC homozygotes: 10.1 % (n=18) vs. 16.95% in G-allele carriers (n=29), (p=0.031, Cox`s F test). Transcriptomic analysis revealed a markedly higher expression of NLRP-2 in CC homozygotes. CONCLUSIONS: The rs12526453 CC homozygotes (previously associated with increased risk of myocardial infarction) showed, in 2 independent samples, better long-term survival. The finding of such high effect size, after appropriate validation, could potentially be translated into clinical practice.


Assuntos
Proteínas dos Microfilamentos/genética , Infarto do Miocárdio/genética , Polimorfismo de Nucleotídeo Único , Idoso , Feminino , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/epidemiologia , Análise de Sobrevida
3.
Genome Med ; 7(1): 26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25984239

RESUMO

BACKGROUND: Heart failure (HF) is the most common cause of morbidity and mortality in developed countries. Here, we identify biologically relevant transcripts that are significantly altered in the early phase of myocardial infarction and are associated with the development of post-myocardial infarction HF. METHODS: We collected peripheral blood samples from patients with ST-segment elevation myocardial infarction (STEMI): n = 111 and n = 41 patients from the study and validation groups, respectively. Control groups comprised patients with a stable coronary artery disease and without a history of myocardial infarction. Based on plasma NT-proBNP level and left ventricular ejection fraction parameters the STEMI patients were divided into HF and non-HF groups. Microarrays were used to analyze mRNA levels in peripheral blood mononuclear cells (PBMCs) isolated from the study group at four time points and control group. Microarray results were validated by RT-qPCR using whole blood RNA from the validation group. RESULTS: Samples from the first three time points (admission, discharge, and 1 month after AMI) were compared with the samples from the same patients collected 6 months after AMI (stable phase) and with the control group. The greatest differences in transcriptional profiles were observed on admission and they gradually stabilized during the follow-up. We have also identified a set of genes the expression of which on the first day of STEMI differed significantly between patients who developed HF after 6 months of observation and those who did not. RNASE1, FMN1, and JDP2 were selected for further analysis and their early up-regulation was confirmed in HF patients from both the study and validation groups. Significant correlations were found between expression levels of these biomarkers and clinical parameters. The receiver operating characteristic (ROC) curves indicated a good prognostic value of the genes chosen. CONCLUSIONS: This study demonstrates an altered gene expression profile in PBMCs during acute myocardial infarction and through the follow-up. The identified gene expression changes at the early phase of STEMI that differentiated the patients who developed HF from those who did not could serve as a convenient tool contributing to the prognosis of heart failure.

4.
BMC Med Genomics ; 6: 49, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24206753

RESUMO

BACKGROUND: Myocardial infarction (MI) often results in left ventricular (LV) remodeling followed by heart failure (HF). It is of great clinical importance to understand the molecular mechanisms that trigger transition from compensated LV injury to HF and to identify relevant diagnostic biomarkers. The aim of this study was to investigate gene expression in the LV and to evaluate their reflection in peripheral blood mononuclear cells (PBMCs). METHODS: MI was induced in rats by ligation of the proximal left coronary artery. Rats with small, moderate, and large MI size were included into the experiment two months after the operation. The development of heart failure was estimated by echocardiography and catheterization. Microarrays were used to compare the LV and PBMCs transcriptomes of control and experimental animals. RESULTS: Only rats with a large MI developed extensive LV remodeling and heart failure. 840 transcripts were altered in LV of failing hearts, and especially numerous were those associated with the extracellular matrix. In contrast, no significant gene expression changes were seen in LVs of rats with moderate or small MI that had compensated LV injury. We showed that ceruloplasmin was similarly overexpressed in the heart and blood in response to HF, whereas downregulation of tetraspanin 12 was significant only in the PBMCs. CONCLUSION: A large size of infarcted area is critical for progression of LV remodeling and HF development, associated with altered gene expression in the heart. Ceruloplasmin and tetraspanin 12 are potential convenient markers in readily obtainable PBMCs.


Assuntos
Perfilação da Expressão Gênica , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/genética , Ventrículos do Coração/metabolismo , Leucócitos Mononucleares/metabolismo , Infarto do Miocárdio/complicações , Transcrição Gênica , Animais , Modelos Animais de Doenças , Insuficiência Cardíaca/sangue , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Wistar , Reprodutibilidade dos Testes
5.
BMC Biotechnol ; 13: 68, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24128347

RESUMO

BACKGROUND: The yeast Saccharomyces cerevisiae can be a useful model for studying cellular mechanisms related to sterol synthesis in humans due to the high similarity of the mevalonate pathway between these organisms. This metabolic pathway plays a key role in multiple cellular processes by synthesizing sterol and nonsterol isoprenoids. Statins are well-known inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the key enzyme of the cholesterol synthesis pathway. However, the effects of statins extend beyond their cholesterol-lowering action, since inhibition of HMGR decreases the synthesis of all products downstream in the mevalonate pathway. Using transgenic yeast expressing human HMGR or either yeast HMGR isoenzyme we studied the effects of simvastatin, atorvastatin, fluvastatin and rosuvastatin on the cell metabolism. RESULTS: Statins decreased sterol pools, prominently reducing sterol precursors content while only moderately lowering ergosterol level. Expression of genes encoding enzymes involved in sterol biosynthesis was induced, while genes from nonsterol isoprenoid pathways, such as coenzyme Q and dolichol biosynthesis or protein prenylation, were diversely affected by statin treatment. Statins increased the level of human HMGR protein substantially and only slightly affected the levels of Rer2 and Coq3 proteins involved in non-sterol isoprenoid biosynthesis. CONCLUSION: Statins influence the sterol pool, gene expression and protein levels of enzymes from the sterol and nonsterol isoprenoid biosynthesis branches and this effect depends on the type of statin administered. Our model system is a cheap and convenient tool for characterizing individual statins or screening for novel ones, and could also be helpful in individualized selection of the most efficient HMGR inhibitors leading to the best response and minimizing serious side effects.


Assuntos
Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Ácido Mevalônico/metabolismo , Saccharomyces cerevisiae/metabolismo , Atorvastatina , Ácidos Graxos Monoinsaturados/farmacologia , Fluorbenzenos/farmacologia , Fluvastatina , Proteínas Fúngicas/metabolismo , Ácidos Heptanoicos/farmacologia , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Indóis/farmacologia , Isoenzimas/metabolismo , Organismos Geneticamente Modificados , Pirimidinas/farmacologia , Pirróis/farmacologia , Rosuvastatina Cálcica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Sinvastatina/farmacologia , Esteróis/biossíntese , Sulfonamidas/farmacologia , Terpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...